COMBINATORICA Akadémiai Kiadó — Springer-Verlag

SOLUTION TO A PROBLEM OF C. D. GODSIL REGARDING BIPARTITE GRAPHS WITH UNIQUE PERFECT MATCHING

R. SIMION and D.-S. CAO

Received Sept 25, 1986 Revised Jan 4, 1988

We give the solution to the following question of C. D. Godsil [2]: Among the bipartite graphs G with a unique perfect matching and such that a bipartite graph obtains when the edges of the matching are contracted, characterize those having the property that $G^+ \cong G$, where G^+ is the bipartite multigraph whose adjacency matrix, B^+ , is diagonally similar to the inverse of the adjacency matrix of G put in lower-triangular form. The characterization is that G must be obtainable from a bipartite graph by adding, to each vertex, a neighbor of degree one. Our approach relies on the association of a directed graph to each pair (G, M) of a bipartite graph G and a perfect matching M of G.

0. Introduction

Let G be a bipartite graph on 2n vertices which has a unique perfect matching, M, i.e., M is the only possible choice of n mutually disjoint edges in G. Take a proper 2-coloring of the vertices of G, thereby partitioning the vertices into two classes, R and C, each of n pairwise non-adjacent vertices. Then the $n \times n$ adjacency matrix A(G), whose rows and columns are indexed by the vertex sets R and C, respectively, can be put in lower triangular form, B, (with 1's on the diagonal), by row and column permutations ([2], Lemma 2.1 and Lemma 1 below). Clearly, B is non-singular, since $\det(B)=1$, and B^{-1} has integer entries. With the additional hypothesis that the graph G/M, obtained from G by contracting the edges in M, is bipartite, Godsil ([2], Theorem 2.1, and Lemma 2 below) showed that B^{-1} is diagonally similar to a matrix B^+ whose entries are non-negative and which dominates B (that is, $B^+(i,j) \ge B(i,j)$, for all $1 \le i, j \le n$). In turn, B^+ can be regarded as the adjacency matrix of a bipartite multigraph, G^+ , in which G appears as a subgraph. In this framework, C. D. Godsil posed the following question:

Problem (Godsil, [2]) Characterize the graphs G such that G^+ is isomorphic to G. The object of this paper is to offer a solution to this problem.

For brevity, we shall refer to graphs which admit a perfect matching as matched graphs, and as uni-matched if they have only one perfect matching.

The paper is organized as follows:

First we establish a map F from the set of pairs $\{(G, M): G \text{ is a matched bipartite graph, } M$ is a perfect matching of $G\}$ to the set of digraphs. This map associates an acyclic digraph to (G, M) iff M is the only perfect matching of G. In this case, the digraph can be regarded as representing a sub-relation of a partial order, and our approach relies, in a sense, on partially ordered sets.

Lemma 1 and Lemma 2 below have been given inductive proofs in [2]. We include alternate proofs, based on our order-theoretic/digraph approach, for two reasons: first, this point of view gives insights which facilitate the demonstration of the final result; secondly, in the interest of completeness and unity of treatment. An alternate approach, based on the Coates graph associated with the matrix B (see [3]) is also outlined.

In the second section we solve Godsil's problem. The answer for the case

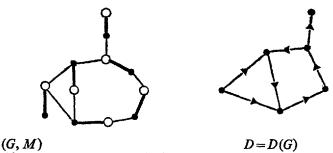
when G is a tree is stated without proof in [2].

Results regarding (uni-)matched trees appear in [5]. The correspondence of matched trees with acyclic digraphs is examined in more detail in [6], leading to asymptotic formulae for the number of matched trees (rooted, planted, unlabeled) and for the number of self-converse directed trees.

1. Preliminary results

Let G be a matched bipartite graph on 2n vertices. Fix a bipartition of the vertices of G as in the introduction, into classes R and C; let M be a perfect matching of G. Then F(G, M) is the directed graph D = D(G) which has a vertex for each edge of M; if the vertices p, q correspond to $\{a, b\} \in M$ and $\{c, d\} \in M$, respectively, then there is a directed edge in D from p to q iff $\{a, c\}$ is an edge in G, and vertex a is in class R. Thus, the number of vertices and edges in G and D are related by #V(D) = #V(G)/2, #E(D) = #E(G) - #V(D). The following observation will be important in the remainder of the paper:

Lemma 0. M is the only perfect matching of G if and only if the associated digraph D = F(G, M) is acyclic.



Class R vertices are marked \bigcirc . The edges in M are in heavy line.

Fig. 1. Illustration of the map $(G, M) \mapsto D = D(G)$

Proof. Note that D = F(G, M) contains a directed cycle iff G contains a cycle C in which every other edge belongs to M.

Thus, if D contains a directed cycle, then, in G, M restricts to a perfect matching of a cycle C. Hence, writing C for the set of edges in this cycle, the symmetric difference $M \triangle C$ constitutes a second perfect matching of G.

Conversely, if G has two different perfect matchings, say, M_1 and M_2 , then there exists a vertex v in G matched to w_1 in M_1 and to w_0 in M_2 , with $w_1 \neq w_0$.

In turn, w_1 is matched in M_2 to some vertex $w_2 \neq w_1$, w_0 etc. Since G is a finite graph, this sequence of vertices must contain a cycle in which edges from M_1 and M_2 alternate. Q. e. d.

An immediate consequence of Lemma 0 is

Corollary. Each connected component of a uni-matched bipartite graph contains at least one vertex of degree 1 in each color class.

Proof. There are several possible proofs, e.g., by induction on the number of vertices, or using a lower bound on the number of matchings as a function of the minimum degree, ([4], Ch. 5). The correspondence with digraphs gives a particularly simple argument: G has a unique matching implies D = D(G) is an acyclic digraph, and since it is finite, each (weak) component of D contains at least one source and one sink (vertices of in-degree and out-degree zero, respectively). These, in turn, correspond to edges in M having at least one vertex of degree 1. Q. e. d.

Let G be a uni-matched bipartite graph on 2n vertices, partitioned into classes R and C. The following two lemmata are prerequisites for the proof of Theorem 2.

Lemma 1. ([2], Lemma 2.1.) The $n \times n$ adjacency matrix A(G) of a uni-matched bipartite graph G can be put in lower triangular form by row and column permutations.

This can also be phrased as: any 0-1 matrix A such that per (A)=1 can be put in lower triangular form via row and column permutations.

Proof. Construct the acyclic digraph D(G) corresponding to G and its unique matching M, as in Lemma 0. Since D(G) is acyclic, it represents an antisymmetric relation on n elements to which we will refer as Rel (D). Let P be the partial order obtained by taking the transitive closure of Rel (D). Now consider any linear extension (topological sorting), L, of the poset P. Thus, L is an order preserving bijection $L: P \rightarrow \{1, 2, ..., n\}$. If L(p)=j, $p \in P$, then label the vertices of G so that the edge $\{v_{n+1-j}, w_{n+1-j}\} \in M$ contracts to P and $v_{n+1-j} \in R$. Finally, permute

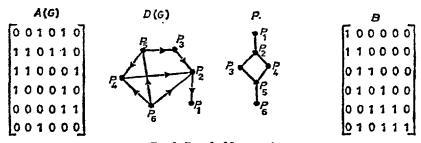


Fig. 2. Proof of Lemma 1

the rows and columns of the adjacency matrix of G so that the i^{th} row and column are indexed by v_i and w_i , respectively. In this form, B, the $n \times n$ adjacency matrix of G is lower triangular. Q. e. d.

Lemma 2. ([2], Theorem 2.2.) Let G be a uni-matched bipartite graph on 2n vertices, with perfect matching M, and with lower triangular $n \times n$ adjacency matrix B. If the

graph G/M is bipartite then B^{-1} is diagonally similar to a matrix B^+ which dominates B.

Proof. First, we relate our problem to the poset-theoretical Zeta and Möbius functions (see, e.g. [1], Ch. 4). Let D and P be as in the proof of Lemma 1. Let $\zeta(x)$ be the Zeta-matrix of P modified by entering the independent variable x instead of 1 for the comparable pairs of P which are not in Rel (D). Thus, $\zeta(0)=B$ and $\zeta(1)=\zeta_P$. Furthermore, the inverse $\mu(x)$ of the matrix $\zeta(x)$, satisfies $\mu(0)=B^{-1}$, and $\mu(1)=\mu_P$, the Möbius matrix of P. Now, it is known that $\mu_P(i,j)$ equals the value of the alternating sum of the number of chains between p_i and p_j in P, according to their length (Hall's Theorem, [1]). In matrix form,

$$\mu(x) = \sum (-1)^m [\zeta(x) - I]^m,$$

where I is the $n \times n$ identity matrix. Thus,

(*)
$$B^{-1}(i, j) = \mu(0)(i, j) = \#\{\text{even length directed paths from } p_i \text{ to } p_j \text{ in } D\} - \#\{\text{odd length directed paths from } p_i \text{ to } p_j \text{ in } D\}.$$

Since G/M is bipartite, all terms in (*) have the same sign. If B(i,j)=1, then there is a directed path of length 1 from p_i to p_j , hence all terms in (*) are negative and $B^{-1}(i,j) \le -1$. On the diagonal, $B^{-1}(i,i)=1=B(i,i)$, since D has no directed cycles, and only the zero-length path is counted in (*). Thus, $|B^{-1}(i,j)| \ge B(i,j)$ for all $1 \le i, j \le n$.

So now it will suffice to show that $|B^{-1}|$ is diagonally similar to B^{-1} where $|B^{-1}|$ is the matrix whose (i,j) entry is $|B^{-1}(i,j)|$. We will assume that G is connected; the generalization to the disconnected case is immediate. Following Godsil's idea, let S be the set of vertices in D which are joined to p_n by path(s) (not necessarily directed) of even length; since G/M is assumed to be bipartite, S is well-defined. Consider the diagonal (+1, -1)-matrix where F(i, i) = 1 iff $p_i \in S$. The claim is that $FB^{-1}F = |B^{-1}|$. Indeed, the multiplication by F on the left has changed the signs in every row indexed by a vertex in S, and then multiplication by F on the right has changed the signs in every column indexed by a vertex in S. Suppose $B^{-1}(i,j) > 0$; then, by (*), there exists some even length (directed) path from p_i to p_j , and since G/M is bipartite, $i \in S$ iff $j \in S$. Consequently the sign of a positive entry in B^{-1} gets changed either 0 or 2 times when B^{-1} is multiplied on both sides by F. Similarly, a negative entry gets precisely one sign change. Thus $B^+ = |B^{-1}|$.

Note. If a loop is added to each vertex of the graph D in the above discussion, the resulting graph is the Coates graph, D_B , associated with the matrix B. Thus, D_B has no directed cycles other than loops, and a well-known formula in flow graph theory (see [4]), yields (*) as the expression for the algebraic cofactor $B^*(i,j)$. Since det (B)=1, $B^*(i,j)=B^{-1}(i,j)$, hence, (*) could be derived based on flow graph theory rather than partially ordered sets.

2. Solution to $G \cong G^+$

In the framework established in the previous section we can now prove

Theorem 2. Let G be a bipartite graph on 2n vertices having a unique perfect matching, M, and such that G/M is bipartite. Then, with the notation established in the introduction, G is isomorphic to G^+ iff G can be constructed from a bipartite graph on n vertices by adding a neighbor of degree 1 to each vertex.

Proof. First suppose that $G \cong G^+$. We begin by proving that the associated poset P has height <2, i.e., there are no directed paths of length 2 more in D. If, on the contrary, D contained a directed path $\pi: p_i, p_k, p_j$ then B(i, j) = 0, otherwise there would be an edge between p_i and p_i , contradicting the hypothesis that G/M, which is the underlying undirected graph of D, is bipartite. On the other hand, $G \cong G^+$ is equivalent to $B = B^+$ by Lemma 2. So, in particular, B(i, j) = 0implies $B^+(i,j)=0$, and hence, $B^{-1}(i,j)=\mu(0)(i,j)=0$. However, we have seen that all non-zero terms in (*) have the same sign. So, each term in (*) must be zero, and this contradicts the existence of π . Now, if P has height <2, each vertex in D has in-degree = 0 or out-degree = 0, and, by the construction in Lemma 0, at least one of the vertices in each matched pair in G must have degree 1. Finally, G can be constructed from the bipartite graph G/M by adding a degree 1 neighbor to each vertex.

Conversely, if G has this form, it follows immediately that P is a poset of height <2, and Rel (D) is automatically transitively closed. Since only directed paths of length 0 and 1 exist in P=Rel(D), we have $\mu_P=I-(\zeta_P-I)=-\zeta_P+2I$. Thus, $B^{-1}=-B+2I$; but then $|B^{-1}|=B$, because B has all diagonal entries equal to 1. Since, from the proof of Lemma 2, $B^+=|B^-I|$, we conclude that $B=B^+$. O. e. d.

References

- [1] M. AIGNER, Combinatorial Theory, Springer-Verlag, New York, (1979).
- [2] C. D. Godsil, Inverses of trees, Combinatorica 5 (1985), 33-39.
- W. MAYEDA, Graph Theory, Wiley-Interscience, (1972).
 H. Ryser, Combinatorial Mathematics, MAA Carus Mathematical Monographs, No. 14 (1963).
- [5] R. Simion, Trees with 1-factors: degree distribution, Congressum Numerantium, 45 (1984), 147—
- [6] R. Simion, Trees with 1-factors and oriented trees, manuscript.

R. Simion

Department of Mathematics George Washington University, Washington, D.C. 20052, U.S.A.

D.-S. Cao

Mathematics Departement Hua Zhong University of Science and Technology Wuhan, Hubei Province People's Republic of China